A.P.O. Rules are Asymptotically non Deficient for Estimation with Squared Error Loss

نویسنده

  • Michael Woodroofe
چکیده

The problem considered is sequential estimation of the mean 0 of a one-parameter exponential family of distributions with squared error loss for estimation error and a cost c > 0 for each of an i.i.d, sequence of potential observations X 1, X 2 . . . . . A Bayesian approach is adopted, and natural conjugate prior distributions are assumed. For this problem, the asymptotically pointwise optimal (A.P.O.) procedure continues sampling until the posterior variance of 0 is less than c(ro+n ), where n is the sample size and r o is the fictitous sample size implicit in the conjugate prior distribution. It is known that the A.P.O. procedure is Bayes risk efficient, under mild integrability conditions. In fact, the Bayes risk of both the optimal and A.P.O. procedures are asymptotic to 2Vo]/C, as c--,0, where V o is the prior expectation of the standard deviation of X 1, given 0. Here the A.P.O. rule is shown to be asymptotically non-deficient, under stronger regularity conditions: that is, the difference between the Bayes risk of the A.P.O. rule and the Bayes risk of the optimal procedure is of smaller order of magnitude than c, the cost of a single observation, as c ~ 0 . The result is illustrated in the exponential and Bernoulli cases, and extended to the case of a normal distribution with both the mean and variance unknown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Admissibility in a One Parameter Non-regular Family with Squared-log Error Loss Function

‎Consider an estimation problem in a one-parameter non-regular distribution when both endpoints of the support depend on a single parameter‎. ‎In this paper‎, ‎we give sufficient conditions for a generalized Bayes estimator of a parametric function to be admissible‎. ‎Some examples are given‎. ‎

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004